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a b s t r a c t

In many response time tasks, people slow down after they make an error. This phenomenon of post-
error slowing (PES) is thought to reflect an increase in response caution, that is, a heightening of response
thresholds in order to increase the probability of a correct response at the expense of response speed.
In many empirical studies, PES is quantified as the difference in response time (RT) between post-error
trials and post-correct trials. Here we demonstrate that this standard measurement method is prone
to contamination by global fluctuations in performance over the course of an experiment. Diffusion
model simulations show how global fluctuations in performance can cause either spurious detection
of PES or masking of PES. Both confounds are highly undesirable and can be eliminated by a simple
solution: quantify PES as the difference in RT between post-error trials and the associated pre-error trials.
Experimental data are used as an empirical illustration.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

People tend to slow down after they commit an error, a
phenomenon known as post-error slowing (PES). Ever since the
classic article ‘‘What does a man do after he makes an error?’’
(Rabbitt, 1966), the PES phenomenon has received considerable
attention in the response time (RT) literature and several
explanations have been proposed to explain its existence (e.g,
Laming, 1968, 1979,Notebaert et al., 2009, Rabbitt &Rodgers, 1977,
see Dutilh, Vandekerckhove, Forstmann, & Wagenmakers, 2012),
for an empirical comparison). The most popular account of PES
states that it reflects an error-induced increase in response caution
that allows a participant to maintain a relatively constant level
of accuracy (e.g., Botvinick, Braver, Barch, Carter, & Cohen, 2001,
Smith & Brewer, 1995).

Specifically, this account holds that participants continually
monitor their performance and interpret errors as a sign that
the chosen response threshold was too liberal. Consequently,
participants heighten their threshold following an error in order to
increase the probability of a correct response on the next trial. The
heightened threshold leads to fewer errors but also causes slower
responding (i.e., the PES phenomenon).

At the same time, participants interpret correct responses as a
sign that the chosen response threshold was too conservative, and
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therefore they are assumed to lower their threshold following each
correct response. Thus, participants becomemore cautious after an
error and slightly more daring after a correct response; in this way
the system self-regulates to a state of homeostasis characterized
by fast responses and few errors. Fig. 1, based on fictitious but
representative data, illustrates the typical pattern of modest post-
correct speed-up and pronounced post-error slowing (e.g., Brewer
& Smith, 1989; Smith & Brewer, 1995).

This response-monitoring interpretation of PES suggests that
the amplitude of PES can be used as a direct measure of cogni-
tive control.1 Although the response monitoring/cognitive control
interpretation might not be appropriate in all cases (e.g., Dutilh,
Forstmann, Vandekerckhove, &Wagenmakers, submitted for pub-
lication, Notebaert et al., 2009), in many studies it is assumed to
be correct from the outset. Consequently, the magnitude of PES is
often treated as an important dependent variable that is correlated
with neurophysiological variables such as anterior cingulate ac-
tivity (Danielmeier, Eichele, Forstmann, Tittgemeyer, & Ullsperger,
2011; Li, Huang, Constable, & Sinha, 2006), error-related negativity
(ERN) and positivity (Pe; Hajcak, McDonald, & Simons, 2003b), and
cortisol levels (e.g., Tops & Boksem, 2010).

1 Note that Brewer and Smith (1989), Rabbitt (1979), and Smith and Brewer
(1995) interpret the coarseness of the fluctuations of RT around errors as a negative
indicator of cognitive control. These authors argued that the elderly have coarser
control over their speed–accuracy trade-off, indicated by larger fluctuations in RT
surrounding an error.
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Fig. 1. Typical fluctuations in mean RT surrounding an error E. Fictitious data are
representative of results reported in Laming (1979) and Smith and Brewer (1995).
Participants tend to speed up until they commit an error, after which they slow
down considerably. Subsequent to the post-error trial E + 1, participants start to
speed up again.

In this article we discuss how PES can best be measured.
First we explain how, although straightforward and intuitive, the
traditionalmethod to quantify PES can create spurious PES ormask
real PES as a result of global changes in performance. We illustrate
this confound with two simulation studies and then show how
the confound can be eliminated. The final section illustrates both
spurious and masked PES in a real data set.

2. The measurement of post-error slowing

There are several methods to quantify PES. The most insightful
method plots the fluctuations in mean RT surrounding an error
(e.g., Brewer & Smith, 1989; Smith & Brewer, 1995; see Fig. 1 for
an example). The resulting graph shows mean RT for error trial E,
mean RT for subsequent trials E + 1, E + 2, etc., and mean RT for
preceding trials E − 1, E − 2, etc. The form of the graph depends
slightly onwhat trials are included in the calculations. For example,
one may choose to include pre-error trials that are also post-error
trials, one may include errors that are simultaneously pre-error or
post-error trials, and so forth. Figs. 4–6 are based on seven-trial
sequences where the middle trial was the sole error, ensuring that
fluctuations inmean RT are not confounded by fluctuations in error
rate. Such a selection of trial sequences may not be feasible when
the number of observations is low.

Although the graphical method is very informative, researchers
often prefer a method that quantifies the magnitude of PES in
a single number. The traditional and most intuitive method to
quantify PES in a single number is to calculate the difference in
mean RT (MRT) between trials post-error and trials post-correct.
This difference,�PEStraditional = MRTpost-error−MRTpost-correct, is often
calculated per condition per participant and is used as a behavioral
variable for further analysis. The magnitude of �PEStraditional may
depend slightly on whether or not error trials are included in the
calculation ofMRTpost-error andMRTpost-correct (e.g., Hajcak & Simons,
2008).2

The popularity of the traditional method is highlighted in
Table 1, which lists all 14 articles that quantify PES and have over
100 citations.3 The right column of Table 1 indicates the method
used to quantify PES. Nine out of the 14 articles used the traditional
measure described above. Three articles used an adjusted version
of the traditionalmethod that is sensitive to the same problem that
we outline below.

2 A related method compares (correct) post-error trials to all correct trials (both
post-error and post-correct). This method is also vulnerable to the confound of
global fluctuations in performance that we discuss in this paper.
3 Obtained from scholar.google.com, December 2011.

3. A confound

The traditional method of quantifying PES, �PEStraditional =
MRTpost-error −MRTpost-correct, has strong face validity. However, the
method is vulnerable to a confound that was already hinted at by
Laming (1979, p. 205) when he suggested . . .

. . . the possibility that errors and the increased RT on trials
which follow them are jointly due to a local deterioration in
performance. Suppose, for example, that the subject suffers
short periods of relative inattention to the CR [choice response]
task . . .During these periods RTs are longer and errors more
frequent than normal.

Such local deterioration of performance leads to two possible
complicationswhen PES is calculated using the traditionalmethod.
The first complication is that global changes in ability ormotivation
may lead to spurious post-error slowing. The second complication
is that global changes in response cautionmay lead to spurious post-
error speed-up. Both situations are illustrated in Fig. 2.

First, consider the hypothetical scenario where a participant
starts a one-hour, 1000-trial experimental session with high
motivation. As a result, the participant’s responses are fast and
accurate. However, as the session proceeds, fatigue starts to
kick in and motivation drops. This decrease in motivation is
illustrated in the upper left panel of Fig. 2. With low motivation,
the participant’s responses become increasingly slow (middle left
panel) and inaccurate (bottom left panel). Now suppose that this
participant does not slow down after errors, that is, real PES is
completely absent. Now, we quantify PES in this participant’s
data with the standard method �PEStraditional = MRTpost-error −
MRTpost-correct. Notice that most post-error RTs will originate from
the second half of the session, because there are more errors in
that half. Likewise, most post-correct RTs will originate from the
first half of the session, because there are more correct responses
in that half. Because of the decrease in motivation, responses in
the first half of the experiment are quicker than responses in the
second half of the experiment. Therefore, post-correct trials will on
average be faster than post-error trials, despite the fact that there
is no real PES. Thus, the traditional comparison of post-error RTs
with post-correct RTs can yield an artificial PES effect (or evenmask
post-error speed-up).4

Second, consider the hypothetical scenario where a participant
starts an experimental session very keen on being accurate. The
participant’s responses are then highly accurate but slow. As the
session continues, the participant may get increasingly careless.
The associated decrease in response caution is illustrated in
the upper right panel of Fig. 2. With decreasing caution, the
participant’s responses become quicker (middle right panel) at the
cost of accuracy (bottom right panel). Analogous to the previous
case, suppose that for this participant, real PES is completely
absent. Once again we analyze PES in this participant’s data set
in the standard fashion, that is, �PEStraditional = MRTpost-error −
MRTpost-correct. Note that most error RTs and therefore most
post-error RTs will again originate from the second half of
the experiment, where the participant was rather careless. As
before, most post-correct RTs originate from the first half of
the experiment, where the participant was relatively careful. In
contrast to the first scenario, however, responses are faster in the
second half of the experiment than in the first half. Therefore, post-
correct trials are on average slower than post-error trials, despite
the fact that there is no real PES. Thus, the traditional comparison

4 A similar artificial PES effect occurswhen participants gradually improve on the
task at hand, for instance through practice.
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Table 1
Popularity of the traditional measure for PES. Included are all 14 articles that quantify PES and have more than 100 citations. This list is
based on a scholar.google.com search on ‘‘post-error slowing’’. Nine out of 14 articles use the traditional method, and only one article
reported differences in mean RT between pre-error vs. error trials and between post-error vs. error trials. Three studies (adj.) matched
correct trials to error trials before comparing the post-correct to post-error trials in order to control for the fact that errors are often faster
than correct responses. This adjustment does not correct for the confound described in this article.

Reference Number of citations Measure

Hajcak et al. (2003b) 167 �PEStraditional
Kerns et al. (2004) 1014 �PEStraditional
Gehring and Knights (2000) 563 �PEStraditional
Klein et al. (2007) 112 �PEStraditional
Hajcak et al. (2004) 141 �PEStraditional (adj.)
Hajcak et al. (2003a) 159 �PEStraditional (adj.)
Hajcak and Simons (2002) 158 �PEStraditional (adj.)
Alain et al. (2002) 106 �PEStraditional
De Bruijn et al. (2004) 117 �PEStraditional
Fellows and Farah (2005) 118 �PEStraditional
Egner and Hirsch (2005) 148 MRTpost-error − MRTcorrect
Jones et al. (2003) 117 �PEStraditional
Mathalon et al. (2002) 141 �PEStraditional
Stuss et al. (2003) 159 MRTpost-error −MRTerror,MRTpre-error −MRTerror

Fig. 2. Schematic representation of two confounds. The three panels in the left column illustrate that, when a participant’s motivation decreases during an experimental
session, slow RTs co-occur with low accuracy. In this case, calculation of �PEStraditional may result in spurious or inflated estimates of PES. The three panels in the right column
illustrate that, when a participant’s caution decreases during an experimental session, slow RTs co-occur with high accuracy. In this case, calculation of �PEStraditional may
result in spurious post-error speeded, or deflated estimates of PES.

of post-error RTs with post-correct RTs can yield an artificial post-
error speed-up effect (or mask PES when it is present).

The two scenarios described above show that global changes in
performance may systematically confound the estimation of PES,
at least when it is quantified as �PEStraditional. Below we present two
simulation studies that support this conclusion by quantifying the
impact of the two confounds using a process model of RT.

4. Simulation studies

In two simulation studies we used the diffusion model (Ratcliff,
1978; Ratcliff & McKoon, 2008; Wagenmakers, 2009) to make
the scenarios described above more concrete. The diffusion model

produces both RTs and percentage correct. Most importantly for
this study, the model can describe the specific influences of
motivation and response caution on response time data.

4.1. The diffusion model

In the diffusion model for speeded two-choice tasks (Ratcliff,
1978), stimulus processing ismodeled as the noisy accumulation of
evidence over time. A response is initiated when the accumulated
evidence reaches a predefined boundary (Fig. 3). The main
components of the diffusion model are (1) speed of information
processing, quantified by drift rate v. Low absolute values of v
produce relatively long RTs and high error rates; (2) response
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Fig. 3. Graphical illustration of the diffusion model, as applied to the random dot
motion task. In this task, participants have to decide quickly whether a stimulus
appears to move left or right. Consider a trial in which the stimulus moves to the
right. The two example sample paths represent the accumulation of evidencewhich
result in one correct response (‘‘right’’, light line) and one error response (‘‘left’’,
dark line). Repeated application of the diffusion process yields histograms of both
correct responses (upper histogram) and incorrect responses (lower histogram).
As is evident from the histograms, the correct, upper ‘‘right’’ boundary is reached
more often than the incorrect, lower ‘‘left’’ boundary. The total RT consists of the
sum of a decision component, modeled by the noisy accumulation of evidence, and
a nondecision component that represents the time needed for processes such as
stimulus encoding and response execution.

caution, quantified by boundary separation a. Low values of a
lead to relatively short RTs and high error rates; and (3) a priori
bias, quantified by starting point z. Together, these parameters
generate a distribution of decision times DT. The observed RT,
however, also consists of stimulus-nonspecific components such as
response preparation and motor execution, which together make
up nondecision time Ter . The model assumes that Ter simply shifts
the distribution of DT, such that RT = DT + Ter (Luce, 1986).
Themodel specification is completed by including parameters that
specify across-trial variabilities in drift rate, starting point, and
nondecision time (Ratcliff & Tuerlinckx, 2002). These variability
parameters allow the model to account for empirical phenomena
such as the finding that errors can be systematically faster or
systematically slower than correct responses.

After the diffusion model has been fit to data, the parameters
can be interpreted in terms of psychological processes (e.g., ability,
caution, bias), allowing a decomposition of performance into its
constituent cognitive elements. The diffusion model has been
applied to a range of different tasks such as lexical decision
(e.g., Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009)
and perceptual discrimination (e.g., Ratcliff & Rouder, 1998)
with the goal to increase our knowledge of aging (e.g., Ratcliff,
Thapar, & McKoon, 2006, 2010), practice (e.g., Dutilh, Krypotos,
& Wagenmakers, 2011; Dutilh et al., 2009), and clinical disorders
(e.g., White, Ratcliff, Vasey, & McKoon, 2009, 2010a,b).

In the simulation studies, we use the diffusion model to
simulate plausible RT data that reflect the two hypothetical
scenarios described in the previous section. For the first scenario,
in which motivation changes systematically across trials, we
simulated data in which all parameters of the diffusion model
were constant, but drift rate v changed. For the second scenario,
in which response caution changes systematically across trials, we
simulated data inwhich all parameters of the diffusionmodelwere
constant, but boundary separation a changed.

4.2. Simulation I: spurious post-error slowing

In this section we reproduce the first scenario described above:
spurious PES as a consequence of global changes in motivation.

In order to minimize the effects of sampling variation, we
simulated an experiment of 100,000 consecutive trials.5 Data were
generated from the diffusion model using a default set of plausible
parameters (Matzke & Wagenmakers, 2009): a = 0.12, z =
a/2, Ter = 0.300, sz = 0.2a (i.e., across-trial variability in starting
point), η = 0 (i.e., across-trial variability in drift rate), and st = 0
(i.e., across-trial variability in nondecision time).We used drift rate
as a proxy formotivation. Note that in this simulation the PES effect
was completely absent.

We explored the effect of four types of fluctuation inmotivation
(i.e., drift rate): drift rate constant, drift rate decreasing as a step
function, drift rate decreasing linearly, and drift rate fluctuating as
a sine function. The simulation results are shown in Fig. 4 with one
panel for each type of fluctuation (as denoted in figure headers).
Each panel showsmean error RT, andmean correct RT for the three
trials preceding an error and the three trials following an error.
The asterisk represents mean correct RT for post-correct trials. The
vertical gray bars quantify the traditional measure for PES, that is,
�PEStraditional = MRTpost-error − MRTpost-correct.

In the top-left panel of Fig. 4 drift rate is a constant v = 0.22
across trials. Consequently, mean RT is also constant and does
not depend on the position relative to the error E. The measure
�PEStraditional appropriately indicates a negligible PES effect.

Now consider the upper right panel of Fig. 4. The only difference
with the upper left panel is that drift rate v is now linearly
decreasing from vhigh = 0.38 on the first trial to vlow = 0.06 on
the last trial. Again, mean RT around errors is practically constant,
suggesting (correctly) that there is no real PES. However, the
traditional measure �PEStraditional now yields a spurious PES effect
of 53 ms. The bottom left panel shows the results of a similar
simulation where drift rate is high and constant in the first half
of the experiment (i.e., vhigh = 0.38) and low and constant in
the second half of the experiment (i.e., vlow = 0.06). The bottom
right panel displays the results of a simulationwhere drift rate was
fluctuating according to a sine wave (with a period of 100 trials;
max(v) = vhigh = 0.38;min(v) = vlow = 0.06). Just as in the
simulationwith a linear change in drift rate,meanRT around errors
is practically constant, suggesting (correctly) that there is no real
PES. However, the traditional measure �PEStraditional yields spurious
PES effects. Fig. 4 also shows the results of the robust measure for
PES that we discuss later. This method appropriately indicates that
there is no PES.

In sum, these simulations demonstrate that a systematic change
in motivation confounds �PEStraditional, possibly leading to spurious
PES. Note that the direction of change is irrelevant, since both
an increase and a decrease in motivation yield similar local
differences.

4.3. Simulation II: masked post-error slowing

In this section we reproduce the second scenario described
earlier: masked PES as a consequence of global changes in caution.
In order to minimize the effects of sampling variation, we again
simulated an experiment of 100,000 consecutive trials. Data were
generated from the diffusion model using v = 0.22, z =
a/2, Ter = 0.300, sz = 0.2a (i.e., across-trial variability in
starting point), η = 0 (i.e., across-trial variability in drift rate),
and st = 0 (i.e., across-trial variability in nondecision time). We
used boundary separation as a proxy for caution. In this simulation,
we generated a PES effect by increasing boundary separation after
an error. Specifically, all trials following a correct response used a
lower boundary separation of a(t) − 0.008 (where a(t) indicates
the local level of boundary separation that may be subject to

5 For each panel shown in Fig. 4 we simulated one experiment.
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Fig. 4. Performance of two PES measures when drift rate fluctuates over trials and PES is absent. The solid line represents mean RT for correct trials around an error and
for the error itself. When drift rate fluctuates systematically across trials (bottom-left, as a step function; top-right, linearly; bottom-right, as a sine function), the traditional
measure leads to spurious detection of PES (the vertical gray bars). In contrast, the robust measure supports the correct conclusion: there is no PES. Error bars indicate one
standard error of the mean.

systematic variation as indicated below), and all trials following
an error used a higher boundary separation of a(t) + 0.008.

We explored the effect of four types of fluctuation in caution
(i.e., boundary separation): boundary separation constant, bound-
ary separation decreasing as a step function, boundary separation
decreasing linearly, and boundary separation fluctuating as a sine
function. The simulation results are shown in Fig. 5 with one panel
for each type of fluctuation (as denoted in figure headers). As be-
fore, each panel shows mean error RT, and mean correct RT for the
three trials preceding an error and the three trials following an er-
ror. The asterisk represents mean correct RT for post-correct trials.
The vertical gray bars again quantify the traditional measure for
PES, that is, �PEStraditional = MRTpost-error − MRTpost-correct.

In the top-left panel of Fig. 5, boundary separation is a constant
a(t) = 0.18 across trials. Mean RT depends on the position relative
to the error E, and the measure �PEStraditional appropriately indicates
a PES effect of 34 ms.

Now consider the upper right panel of Fig. 5. The only difference
with the upper left panel is that boundary separation a(t) is now
linearly decreasing from ahigh = 0.22 on the first trial to alow =
0.14 on the last trial. Again, mean RT around errors is not constant,
suggesting (correctly) that there is PES. However, the traditional
measure �PEStraditional reports a deflated PES effect of only 6 ms. The
bottom left panel shows the results of a similar simulation where
boundary separation is high and constant in the first half of the
experiment (i.e., ahigh = 0.22) and low and constant in the second
half of the experiment (i.e., alow = 0.14). The bottom right panel
displays the results of a simulationwhere boundary separationwas
fluctuating according to a sine wave (with a period of 100 trials;
max(a) = ahigh = 0.22; min(a) = alow = 0.14). Just as in

the simulation with a linear change in boundary separation, mean
RT around errors is not constant, suggesting (correctly) that there
is PES. However, the traditional measure �PEStraditional yields very
small or even negative PES effects (i.e., post-error speed-up). Fig. 5
also shows that the robust measure for PES that we discuss later
appropriately indicates that there is indeed PES.

In sum, these simulations demonstrate that a systematic
change in caution confounds �PEStraditional, possibly leading to an
underestimated ormasked PES. Note that the direction of change is
again irrelevant, since both an increase and a decrease in response
caution yield similar local differences.

5. A simple solution

The above confounds arise because post-correct and post-
error trials (i.e., the trials used to calculate �PEStraditional) are not
evenly distributed across the time series. The confounds can be
eliminated when we compare post-error trials to post-correct
trials that originate from the same locations in the time series.
One natural option is to use post-correct trials that are pre-error
trials at the same time. So, instead of comparing the mean RTs of
all post-error trials to those of all post-correct trials, we conduct
pairwise comparisons around each error (see Nelson, Boucher,
Logan, Palmeri, & Schall, 2010 for a similar method in a different
context). In other words, we take the average of RT (E + 1) −
RT (E−1) for all errors E. This comparisonwill nowbe referred to as
the robust measure �PESrobust as opposed to the traditionalmeasure
�PEStraditional.

Figs. 4 and 5 allow a comparison of �PESrobust and �PEStraditional.
As anticipated, �PESrobust is not much affected by global fluctuation
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Fig. 5. Performance of two PES measures when boundary separation fluctuates over trials and PES is present. The solid line represents mean RT for correct trials around an
error and for the error itself. When boundary separation fluctuates systematically across trials (bottom-left, as a step function; top-right, linearly; bottom-right, as a sine
function), the traditional measure fails to detect positive PES (the vertical gray bars). In contrast, the robust measure supports the correct conclusion: there is PES. Error bars
indicate one standard error of the mean.

in motivation and caution, but �PEStraditional is. For the simulations
without PES but with relatively pronounced fluctuations in
motivation, �PESrobust correctly estimates PES to be very small;
for the simulations with PES but with relatively pronounced
fluctuations in caution, �PESrobust correctly estimates PES to be in
between 29 and 48 ms.6 This behavior is the mirror opposite of
�PEStraditional, a measure that consistently arrives at the incorrect
conclusion.

6. Towards a principled solution

The measure �PESrobust is designed to be immune against global
performance fluctuations that may adversely affect the widely
used measure �PEStraditional. However, two important problems
remain. First, PES measures capture error-induced changes in a
specific variable, namely mean RT; the measures ignore changes
in accuracy and changes in RT distributions. Such changes can be
captured by the diffusion model described above. The diffusion
model, however, currently does not have amechanism for trial-to-
trial adjustments in the relevant psychological processes such as
response caution. Second, PES measures are difficult to interpret
in terms of cognitive control—do participants with pronounced
PES differ from other participants because they monitor their
performance more closely, or because they exert coarser control
over their behavior?

6 Recall that the PES effect was simulated as an increase in boundary separation.
The resulting effect on mean RT is moderated by the fluctuations in baseline
boundary separation across trials.

In order to quantify the magnitude of cognitive control, it
should first be established how this magnitude relates to the
observed variables RT and accuracy. One attempt to formalize
this relation was made by Vickers (1979), who proposed a self-
regulating accumulator model of decision making. The model
describes how participants keep track of the confidence in each
response. This confidence level is than contrasted to a target level
of confidence. Based on this contrast, participants adjust their level
of response caution after each trial. Importantly, themodel has two
specific parameters that govern two important aspects of cognitive
control: one parameter reflects how carefully participantsmonitor
performance; a second parameter describes how coarsely they
adjust their behavior.7 Another attempt to formally describe how
participants adjust their behavior tomeet different task constraints
is made by Simen, Cohen, and Holmes (2006), who propose a
neurologically plausible model of how participants’ estimates of
reward rates are translated to a dynamic setting of response
thresholds.

The foregoing illustrates how a comprehensive measure of
cognitive control should be based on a formalmodel that describes
how speed and accuracy on a given trial depend on performance
for earlier trials. Therefore, a comprehensive measure should
explicitly describe intact sequences of trials, rather than the
properties of different independent trial conditions such as post-
error andpost-correct. Note that the traditionalmethod to quantify

7 Note that the self-regulating accumulator model does not attribute any special
role to errors. Nonetheless, PES is naturally accounted for by the hypothesized
process.
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PES depends on the implicit assumption that trials are independent
instances of different conditions. In contrast, the method that we
propose treats the trials around errors as parts of intact time series.
Therefore, relative to the traditional measure of PES, the robust
measure we propose here more closely approximates a principled
measure of cognitive control.

7. Empirical Illustration: the confound is real

The simulations above showed that �PEStraditional can detect
spurious PES and mask real PES. We now provide an empirical
illustration of these two situations. For this illustration,we selected
data from two individual participants from a larger study that will
be published elsewhere.

7.1. Method

Elderly participants were presented with the random dot
motion task Britten, Shadlen, Newsome, and Movshon (1992), a
task that is popular in cognitive neuroscience and research on
monkeys. The random dot stimulus consists of a circular display
of dots. The dots appear, disappear and are replaced in such a way
that the entire circle of dots appears to move either left or right.
The apparent motion that the participant perceives can be best
described as the flickering of a turning disco ball in a spotlight.
This illusion is created as follows. At each frame (50 ms), 120
dots are displayed. Every next frame, an experimentally defined
proportion Pmove of the dots from the former frame are shifted a
certain distance lmove to the target side (e.g., right, if the correct
response is right). The remaining portion of the pixels is randomly
replaced in the circle (independent of their previous positions).
Pmove was set to 50%. lmove was set to one pixel. Participants were
instructed to indicate the direction of the apparentmovement (left
or right) by pressing one of two response buttons. For the data
presented here, participants were asked to respond accurately, but
not waste too much time. Two participants were selected for the
current empirical illustration.

7.2. Results

Data for the two participants are shown in Fig. 6. The
interpretation of these panels follows that of Figs. 4 and 5; each
panel shows the mean RT of correct trials that either precede
(E − 1, E − 2, E − 3) or follow (E + 1, E + 2, E + 3) an error.
The asterisk again represents the mean post-correct RT, and the
vertical gray bars indicates the traditional measure of PES, that is,
�PEStraditional = MRTpost-error − MRTpost-correct.

Participant A, whose data (n = 1400 trials) are displayed in
the upper panel of Fig. 6, shows a pattern similar to the synthetic
patterns shown in Fig. 4. The traditional measure estimates a
sizable 90 ms. PES effect but the robust measure suggests PES is
entirely absent. The latter conclusion is supported by the relatively
constant mean RT around errors. This data set is an example of
spurious PES.

Participant B, whose data (n = 1300 trials) are displayed in
the lower panel of Fig. 6, shows a pattern similar to the synthetic
patterns shown in Fig. 5.8 The traditional measure estimates a
modest 25 ms PES effect but the robust measure suggests that
the true PES is much larger (i.e., 88 ms.). The latter conclusion is
supported by the fact that the mean RT changes sharply around
errors. This data set is an example of masked PES.

8 The twoparticipants have unequal number of trials because the testing protocol
was to collect as many data as possible in a fixed time period.

Fig. 6. Fluctuation of mean correct RT around error trials (line) and post-correct
RT (asterisk). Each panel shows data for one selected participant. The upper panel
participant shows no PES, but the traditionalmeasure falsely indicates the presence
of PES. The lower panel participant does show PES, but the traditional measure
strongly underestimates the effect. Error bars indicate one standard error of the
mean.

Fig. 7 shows, for each of the two participants discussed above,
the entire time series as a 11-trial moving average of RT. Error
responses are indicated as black dots.

The upper panel shows that participant A has large fluctuations
in both RT and error rate; moreover, the time series shows phases
of poor performance (i.e., long RTs and high error rates). The lower
panel shows that participant B has large fluctuations in RT. For
both participants, the pronounced temporal fluctuations are the
most likely explanation for the difference between the robust
and traditional measures of PES. It should be mentioned that the
response time distributions of both participants look regular and
that the percentages correct (81% and 99%, respectively) are not
unusual in the moving dots task.

8. Concluding comments

Over the last two decades, cognitive control has become amajor
research topic in experimental psychology. PES is assumed to be
an indicator of cognitive control and as such it is often used as
an important behavioral variable. Recently, however, some studies
have questioned whether PES really reflects cognitive control (e.g.,
Dutilh et al., 2012; Notebaert et al., 2009). In this study, however,
we focused on a more elementary issue regarding the application
of PES as a dependent variable: the reliability of its estimation.

The traditional method to quantify PES comparesmean RT after
errorswithmeanRT after correct responses.Wedemonstrated that
this analysis is vulnerable to two confounds that both result from
fluctuations of a participant’s performance over the course of an
experiment. These confounds are global changes in motivation or
ability and global changes in response caution. We showed how
these confoundsmay lead to both spurious andmasked PES effects,
both in simulations and in two empirical data sets. The solution
we offered is both simple and adequate: in the comparison of
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Fig. 7. Response time and error rate fluctuate over trials. The lines show an 11-trial moving average of RT, the black dots indicate where errors are committed. Participant
A, for whomwe found spurious post-error slowing, shows large fluctuations in both RT and error rate. Participant B, for whomwe found masked post-error slowing, shows
large fluctuations in RT.

post-error mean RT and post-correct mean RT, only those post-
correct trials should be included that are also pre-error trials. This
additional condition of our robust method ensures that post-error
andpost-correct trials originate from the same locations in the data
set. This property of the robust method makes it immune to global
fluctuations in performance.

The field of research that uses PES as a behavioral variable has
expanded strongly over the past decade. The PES phenomenon it-
self however has not gained interest proportionally. Consequently,
little attention has been given to the theoretical background of
PES, let alone the related methodological issues. There seems to
be no compelling reason why researchers have stuck to the tra-
ditional method of quantification. The robust method we propose
here is easy to apply, insensitive to changes in performance over
the course of an experiment, and hence allows a more informa-
tive and veridical measurement of post-error slowing. Our robust
method does however not describe why participants slow down
after an error. Furthermore, it focuses on mean RT and ignores ac-
curacy and the spread of RT. A comprehensivemeasure of cognitive
control should follow from a model that describes how the inter-
play of a decision maker’s ability and cognitive control produces
the time series of accuracy and RT.
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